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Diffusion-ordered spectroscopy (DOSY) is one of the most 5 

powerful methods for intact mixture analysis by NMR. 
However, the separation of overlapped spectra by current 
DOSY methods typically requires a minimum of 30% 
difference in diffusion coefficient. Here we present a new 
algorithm (OUTSCORE) that improves the situation by 10 

almost an order of magnitude, allowing the unmixing of 
severely overlapped species of similar size, by combining least 
squares fitting with cross-talk minimisation. 

 Diffusion-ordered spectroscopy (DOSY) (1-3) is a widespread 
tool for mixture analysis, combining pulsed field gradient (PFG) 15 

NMR experiments with a variety of different post-processing 
techniques in order to extract the spectra of different mixture 
components.  The experimental data needed are acquired in a 
series of PFG-NMR experiments run with different gradient 
strengths, causing signal attenuation that depends upon the 20 

diffusion coefficients D of the different species. The attenuation 
for a given signal is typically described by an exponential decay 
of the form of the Stejskal-Tanner (S-T) equation (4, 5). By 
fitting the signal decays in the PFG-NMR dataset to the S-T 
equation, values for D can be extracted for individual peaks, 25 

spectral regions, or the whole dataset. Depending on the post-
processing method used, component spectra are usually obtained 
either from cross-sections or selective projections of a DOSY 
spectrum, or as a series of 1D spectra and associated diffusion 
decay shapes obtained by fitting the entire dataset. 30 

 The simplest, and often most useful, post-processing approach 
is high-resolution (HR) DOSY (6), in which the decays of 
individual spectral peaks are fitted to the S-T equation and the 
resultant diffusion coefficients and error estimates are used to 
construct a 2D DOSY spectrum. Unfortunately, where peaks 35 

from different components overlap HRDOSY fails, usually (7) 
returning a value of D intermediate between those of the species 
concerned (see e.g. Figure 1a) and obscuring chemical 
information about the analytes. With univariate methods 
(independent fitting of each spectral peak / frequency), an 40 

obvious next step is to model each peak decay using two - or 
more - exponentials (8), a continuous distribution (9-11), or 
iterative thresholding (12). However, even biexponential fitting is 
only feasible with very high quality experimental data and for 
species that are well-separated in diffusion coefficient. 45 

 Instead of attempting to accommodate the effects of spectral 
overlap, one may try to avoid them. Experimental techniques 

Fig. 1 a) Part of the HRDOSY spectrum of progesterone and estradiol, 
showing both overlapped peaks that have compromise D values, and well-
resolved peaks (~e.g. around 0.6 ppm). b) SCORE fit of the same data, 50 

showing extensive cross-talk due to the similarity in D between the two 
components. c) OUTSCORE result, with the output spectra showing only 
minor cross-talk, due to experimental instability, between the estradiol 
(upper) and progesterone (lower) spectra. D values from OUTSCORE 
agree well with those found for the non-overlapped peaks in the HR-55 

DOSY spectrum. Spectra of the pure components are given in the ESI. 

such as pure shift NMR (13, 14), 3D DOSY (15, 16) and 
heteronuclear methods (17-19) can all greatly improve resolution. 
Unfortunately the costs in sensitivity and experiment time can be 
high, and even then freedom from signal overlap is not 60 

guaranteed. 
 One alternative to univariate processing is to fit the whole 
dataset simultaneously, in a multivariate decomposition: 
   X = S⊗C + E   (1) 
where X is a two-dimensional data matrix describing the 65 

experimental signal strength as a function of chemical shift and 
gradient amplitude; the matrix S is (ideally) a set of 1D 
component spectra; the matrix C contains the associated set of 
diffusional decay shapes as a function of gradient amplitude; and 
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Fig. 2 HRDOSY (a) and two-component OUTSCORE spectra (b) of 
ribose in D2O. The latter contains three types of species with different D 
values: α and β pyranose (diffusing at nearly the same rate), α-furanose, 
and β-furanose. The OUTSCORE spectra show the β-pyranose / β-
furanose (top) and α-pyranose (bottom), successfully separated with just a 5 

4.6% difference in D. The α-furanose signals are of low intensity, and 
with ~2% difference in D from the other two components, are 
unresolvable with OUTSCORE and are shared between the two spectra 
(in proportions that depend on the relative differences in D).  

the matrix E is the residual, the data not explained by the model 10 

(ideally only noise).   The   symbol   ⊗ represents the Kronecker 
product. 
 The major advantage of multivariate processing is that the 
whole dataset is used, which allows information from non-
overlapped peaks to guide the separation of peaks that are 15 

overlapped. As a result, algorithms such as CORE / SCORE and 
DECRA (20-22) are particularly useful for dealing with heavily 
overlapped mixture spectra. The CORE method uses prior 
knowledge - the expected form of the diffusional attenuation - to 
allow C and S to be found by iterative least squares fitting; 20 

SCORE differs from CORE in using a linear rather than a 
nonlinear inner fitting loop, improving performance usefully. 
Multivariate methods are limited in the number of component 
spectra that can successfully be separated, with a typical practical 
limit for experimental data being 2-4 components. Piecemeal 25 

multivariate processing can circumvent this numerical limitation, 
as only a subset of the species in a mixture is typically present in 
any one region of spectrum (23-25). 
 Typically, a multivariate method aims to choose S and C so 
that E is minimized (Equation 1). A set of component spectra S 30 

and decays C is sought that, when combined and compared to the 
original, leaves as little signal unexplained as possible. There are 
some practical difficulties with this approach however: firstly, 
systematic errors in the experimental data such as spatially non-
uniform PFGs can distort the shape of the diffusion decay, and 35 

secondly, spectrometer instability with respect to temperature, 
field-frequency lock or PFG-induced field disturbances can cause 
variations in peak shape and position. Fortunately, we can 
account for the effect of non-uniform PFGs by measuring the 
non-uniformity and applying a suitable correction to the S-T 40 

equation (26), and most errors in peak shapes and positions (but 
typically not all of those caused by temperature and pH changes) 
can be corrected using reference deconvolution (27). Even with 
such corrections applied to the very best quality experimental 
data, multivariate methods, whilst coping with overlap much 45 

more effectively than their univariate counterparts, will struggle 
where mixture components have similar diffusion coefficients. 
This is because similar values of D correspond to similar decay 
shapes in the diffusion dimension: at < 30% difference in D, a 
residual-based minimization can no longer distinguish between 50 

two components in experimental data with practical signal-to-
noise ratios (S/Ns). In such cases, algorithms typically produce a 
set of diffusion coefficients that do not accurately match those of 
the species in the sample, and a set of component spectra that 
show cross-talk (signals leaking across from one component 55 

spectrum to another), as seen in Figure 1b (SCORE).  
 One interesting strategy for dealing with this limit has recently 
been suggested, called GRECORD (28). An extension of 
RECORD, GRECORD attempts to explain the experimental data 
better by repeating CORE analyses using values of D limited to 60 

those from a consensus set chosen from initial RECORD 
processing. Crucially, the method requires that the diffusion 
coefficient of each species in a mixture be correctly identified in 
at least one of the regions processed. 
 Here we propose a different approach. The OUTSCORE 65 

method (Optimized Unmixing of True Spectra for COmponent 
REsolution) again exploits signals that are at least partly resolved, 
but in a rather different way. The new method replaces the least 
squares optimization criterion of the outer loop of SCORE by a 
requirement to minimize the degree of similarity between trial 70 

component spectra – i.e. to minimize spectral cross-talk.  The fast 
and accurate inner loop of SCORE, which uses linear least 
squares optimization, is retained so that the solution converged on 
minimizes both the residual and the cross-talk between 
component spectra. Biasing the search in this way towards 75 

component spectra that differ, at least in detail, improves the 
ability to separate component spectra by almost an order of 
magnitude. Figures 1a-c compare the results of HRDOSY, 
SCORE and OUTSCORE analysis of a diffusion-weighted NMR 
dataset measured for a mixture of progesterone and estradiol. 80 

OUTSCORE shows much cleaner resolution of the spectra of the 
two components, despite their differing in diffusion coefficient by 
only 17%. The residual cross-talk between the components in 
Figures 1 and 2 is due to deviations from the bilinear model, e.g. 
changes in signal frequency, shape, phase etc. caused by 85 

spectrometer instability. Such experimental errors cannot in 
practice be eliminated by any linear model. Temperature-
dependent peak shifts cause apparent dispersion-mode signals in 
the OUTSCORE spectra (e.g. for the strong methyl signals at 
~0.6/0.75 ppm in Fig 1). Such error signals can be reduced by 90 

using short experiment times, to reduce temperature drift. 
 The criterion of cross-talk minimisation is related to, but 
distinct from, the model-free blind source separation technique 
(29-32), which has recently been applied to DOSY (32). Whilst 
this model-free method has great potential, a model-based 95 

approach such as OUTSCORE that incorporates prior knowledge 
(here in the form of the known S-T decay shape) should always 
perform better if the model is correct. 



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |3 

 Whilst OUTSCORE can allow the resolution of spectral 
components that show very similar diffusional decays, even this 
method will break down with increasing number of mixture 
components and/or similarity between diffusional decays. As a 
general rule, with high S/N data (~>10000:1) and mixture 5 

components of similar concentration, multi-exponential fitting 
and SCORE perform reliably when the difference in D between 
components is >30%. In contrast, with OUTSCORE two 
components differing in D by as little as 3-5% can be resolved, 
though it remains difficult to extract more than 4 components per 10 

fit, or more than 2-3 components where the difference in D is 
very small. OUTSCORE is much less demanding of S/N ratio 
than SCORE; for example the spectra of Figure 1 remain 
separable down to 100:1 (see ESI).  
 As shown in Figure 2, OUTSCORE can permit the spectral 15 

separation of isomers in homogenous solution, resolving isomers 
that interconvert slowly on the NMR timescale and are hard or 
impossible to separate physically. In this example the mixture 
components all have the same molecular mass and the differences 
in D arise purely from their different shapes in solution. In all 20 

cases where we have compared OUTSCORE and SCORE, the 
former has outperformed the latter in resolving power, speed, or 
both. OUTSCORE should be applicable to the vast majority of 
mixtures, but will inevitably fail in the limit case of perfectly 
overlapped spectra (e.g. of a polydisperse polymer); without 25 

spectral difference there is nothing to minimize and the analysis 
is in reality univariate. 
 Whilst allowing greatly improved resolution of mixture 
component spectra with respect to D, OUTSCORE is still limited 
in the number of components per analysis, as noted above. As a 30 

result, using the OUTSCORE cross-talk minimization criterion in 
the multiple, smaller, decompositions of a RECORD / 
LOCODOSY processing scheme could be very useful. 
Unfortunately, because the automated method used in 
LOCODOSY for rank determination relies on the SCORE 35 

algorithm failing characteristically, this particular approach 
cannot be used with OUTSCORE. A number of possible methods 
can be envisaged for fully automatic decomposition of data, 
including a RECORD-style incremental approach. For the most 
complex mixture analysis problems, manual segmentation of a 40 

spectrum using prior knowledge, gained from e.g. HRDOSY 
processing, will offer the most powerful approach. 

Conclusions 
Mixture analysis is a complex and demanding task. DOSY is one 
non-destructive and relatively swift technique in the analyst's 45 

repertoire that has consistently gained in interest and application 
as it has developed. The method encompasses a variety of 
processing approaches, and is most powerful when the results of 
different methods are compared. In the all too common case 
where the NMR spectra of similar mixture components overlap, 50 

OUTSCORE can utilise the information available from non-
overlapped signals to much better effect than earlier methods. All 
of the processing above used the DOSYToolbox (33), which is 
free to download. 
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